Exercice 1

Déterminer dans chaque cas la nature de la série de terme général u_n

1)
$$u_n = 5^{-2n}$$

$$2) \ u_n = 2^{-n} \sin n$$

3)
$$u_n = \frac{n^3}{(n+2)!}$$

$$4) \ u_n = \frac{n}{2^n}$$

5)
$$u_n = \frac{n^{2022}}{n!}$$

5)
$$u_n = \frac{n^{2022}}{n!}$$

6) $u_n = \frac{1}{n\cos^2(n)}$

Exercice 2

Soit u la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \ln\left(1 + \frac{1}{n}\right)$.

- 1) Montrer que $\sum_{k=1}^n u_k = \sum_{k=1}^n \left(\ln(k+1) \ln(k) \right)$
- 2) En déduire que la série de terme général u_n diverge.

Exercice 3

Dans chaque cas, étudier la nature de la série de terme général $v_n = \ln(u_n)$ et calculer sa somme le cas échéant.

$$1) \ \forall n \in \mathbb{N}^*, \ u_n = 1 - \frac{1}{n+1}$$

2)
$$\forall n \in \mathbb{N}^*, \ u_n = 1 - \frac{1}{(n+1)^2}$$

Exercice 4

Pour chacune des séries ci-dessous, déterminer pour quelle(s) valeurs de x elles convergent et calculer leur somme pour n allant de 0 à $+\infty$.

- 1) $\sum (4x)^n$
- 2) $\sum e^{nx}$
- 3) $\sum (1-5x)^n$
- 4) $\sum \frac{x^{2n}}{e^{nx^2}}$

- 5) $\sum \frac{x^{n/2}}{n!}, x > 0$
- 6) $\sum \frac{(3x)^n}{2x^{2n}}, x \neq 0$

Exercice 5

Étudier la nature de la série de terme général u_n :

- $1) \ u_n = \frac{\ln(n)}{n^{\pi}}$
- 2) $u_n = \frac{n^{\frac{5}{2}} + n^{\frac{1}{3}}}{n^{\frac{2}{3}} + n^{\frac{1}{3}}}$
- $3) u_n = \frac{1}{\ln(n)^{\ln(n)}}$

- 4) $u_n = \frac{1}{\sqrt{n} e^{-1/n^2}}$
- 5) $u_n = \sin\left(\frac{1}{n^2}\right)$
- 6) $u_n = 1 e^{-1/n}$

Exercice 6

Justifier que les séries numériques suivantes convergent et calculer leur somme

- 1) $\sum_{n\geq 1} n \times \left(\frac{1}{2}\right)^n$
- 2) $\sum_{n\geq 2} n(n-1) \times \left(\frac{2}{3}\right)^{n+1}$

- 3) $\sum_{n\geq 1} \frac{n^2}{5n}$
- 4) $\sum_{n\geq 1} \frac{n^2}{n!}$

Montrer la convergence et calculer la somme des séries suivantes :

1)
$$\sum_{n\geq 2} \frac{1}{n^2-1}$$
 (indication: écrire $\frac{1}{n^2-1}$ sous la forme $\frac{a}{n-1}+\frac{b}{n+1}$)

$$2) \ \sum\nolimits_{n \geq 1} \frac{1}{n(n+1)(n+2)} \ (indication : \'ecrire \ \frac{1}{n(n+1)(n+2)} \ sous \ la \ forme \ \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2})$$

Exercice 8

Montrer la convergence et calculer les sommes des séries suivantes :

1) $\sum_{n\geq 0} \frac{1}{n!}$

5) $\sum_{n\geq 0} \frac{1}{n!}$

8) $\sum_{n\geq 0} \frac{n^2+2n}{(n+2)!}$

2) $\sum_{n>0} \frac{1}{23n}$

6) $\sum_{n\geq 0} \frac{e^{2nx}}{n!}$

9) $\sum_{n\geq 0} n^2 x^n$

3) $\sum_{n\geq 0} \frac{(-1)^n x^{2n}}{n!}$

10) $\sum_{n\geq 1} \ln\left(\frac{(n+1)^2}{n(n+2)}\right)$

4) $\sum_{i>0} \sum_{j>0} \frac{1}{2^{i+2j}}$

7) $\sum_{n\geq 0} \frac{(-x)^n}{4^n(n+2)!}$

Soit (u_n) une suite de réels positifs et (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{u_n}{1 + u_n}$ Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature.

Exercice 10

Une **série de Bertrand** est une série dont le terme général est de la forme $\frac{1}{n^{\alpha} \ln(n)^{\beta}}$ avec α et β des réels.

- 1) Montrer que si $\alpha \leq 0$, la série diverge.
- 2) Montrer que si $0 \le \alpha < 1$, la série diverge.
- 3) Montrer que si $\alpha > 1$, la série converge.

On traitera le cas $\alpha = 1$ dans le chapitre 15

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique positive. Pour tout $n\in\mathbb{N}$ on note $S_n=\sum_{k=0}^n u_k$. Si la série $\sum u_n$ converge on note S sa somme et on définit par $R_n = \sum_{k=n+1}^{+\infty} u_k = S - S_n$ la suite des restes de la série $\sum u_n$. Enfin, soit (v_n) une suite positive telle que $u_n \underset{n \to \infty}{\sim} v_n$.

- 1) Montrer que si la série $\sum u_n$ diverge, alors $S_n \mathop{\sim}_{n \to \infty} \sum_{k=0}^n v_k$
- 2) Montrer que si la série $\sum v_n$ converge, alors $R_n \underset{n \to \infty}{\sim} \sum_{k=n+1}^{+\infty} v_k$.
- 3) Application : après avoir montré que $\frac{1}{n} \sim \ln(n+1) \ln(n)$, déterminer un équivalent de $\sum_{k=1}^{n} \frac{1}{k}$ lorsque $n \to +\infty$.